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Abstract

Recent findings show that metastasizing cancer cell clusters form in the primary tumor rather
than at the site of metastasis, allowing them to be identified before metastasis occurs. I investi-
gated the extent to which shadows cast by MCF-7 breast cancer tissue phantoms disrupted the
detectability of posterior MCF-7 tissue. Using an Ultrasonix L14-5/38 linear array ultrasound
transducer, my mentor imaged a 29.5 mm x 38.0 mm tissue phantom with a square lesion of
side length 10 mm and attenuation 1.56 dB/cm/MHz. Analyzing resultant data, I determined
parameters including the enveloped radiofrequency data corresponding to the acoustic shadow-
ing effect. I then matched these parameters in simulations. I then used Field II to simulate a
Shadow Caster (SC) region of MCF-7 tissue casting a shadow on a Region of Detection (RoD).
The contrast-to-noise ratio (CNR) metric was used to contrast the detectability of the RoD
when it did and did not contain MCF-7 tissue. The relationship between the CNR of the RoD
and the position and axial dimension of the SC region was documented. I found that the CNR
of shadowed MCF-7 tissue regions is higher than the CNR of shadowed healthy regions. Re-
lationships determined between the CNR and geometric properties of simulations are used to
compute CNR thresholds such that shadowed regions with CNR greater than corresponding
thresholds are considered to likely contain abnormal tissue. My results have the possibility to
be used to identify cancerous regions within acoustic shadows in clinical settings.



1 Introduction

1.1 Bone Metastasis

Breast cancer is the leading cause of cancer and the second most common cause of cancer death

in females. Quickly diagnosing and treating breast cancers is a major concern [13]. Bone metastasis

is the process by which cancer cells escape a tumor, travel through the bloodstream, and land ready

to colonize a distant site. The most common such sites are the spine, ribs, and pelvis. Autopsy

studies have reported bone metastases in 47 to 85% of women dying of breast cancer. The median

survival rate for those with detected bone metastasis is 2 years past diagnosis. [6]. It is estimated

that 90% of cancer-related deaths are related to metastasis [12]. Older models of bone metastasis

postulated that many single breast cancer cells would enter the bloodstream and very few would

survive the journey to a distant bone to then clone at and colonize the bone. Clinical observations

of cell clusters in the bloodstream have not supported these models and recent studies [3] instead

suggest that metastatic cancer cells clone before entering the bloodstream. This has implications

on the prognosis of the cancer at the new organ. Advances in identifying cells that are expected

to become involved with metastasis imply that cells with the K14+ protein are highly likely to

metastasize [3]. Since metastasis is now attributed to cell clusters, metastasizing cell clusters show

up on images created by various imaging systems [2]. Ultrasound imaging systems are the natural

choice to identify these cells before they reach their target because ultrasound is already often used

to differentiate between benign and malignant tumors owing to its relatively low associated costs

[1] and high degree of accuracy [18]. Additionally, early-stage treatments of breast cancer tumors

incorporating high-frequency ultrasound have been developed as a low-cost, noninvasive alternative

to x-ray therapy [5]. Transitioning fully from x-ray technology to ultrasound technology for the

treatment of breast cancers will lead to a large decrease in start-up costs for hospitals specializing

in cancer treatment.

1.2 Acoustic Shadowing

Ultrasound waves permeate tissue relatively unimpeded and so are often used to image subsur-

face tissue [16]. Breast cancer tissue attenuates ultrasound waves much more than non-cancerous

tissue [15] [8] , resulting in dark acoustic shadow regions beyond the part of a cancerous tumor

closest to the transducer. This shadow region can hide regions of breast cancer from clinicians

observing ultrasound images. A common theme with the levels of shadowing generated from breast

cancer tissues is that a region of cancerous tissue may shadow parts of the same tissue unit further

away from the transducer. The prognosis of metastatic cancer is very sensitive to the size of the

metastasizing cell cluster [6], and knowing the precise size and location of the cluster is relevant to

all forms of treatment.
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1.3 Outline of Application

When a patient is checked for breast cancer, clinicians first search ultrasound images for abnor-

malities. (Regions of acoustic shadow by themselves are not considered abnormal, as breast cancers

are highly attenuating.) Images are then analyzed by a computer [17].

Breast cancer regions in acoustic shadows are unlikely to be identified as such by either of these

means. The contrast-to-noise ratio (CNR) of a particular region R of a b-mode image is defined as

CNR =
Sin − Sout

σout
,

where Sin is the mean signal in R (henceforth “in-region”), Sout is the mean signal in a region R′

(henceforth “out-region”) close to R, and σout is the standard deviation of the signal in R′ [14]. A

region with negative CNR is darker than its surroundings. The CNR quantifies the detectability

to the naked human eye of a particular region of tissue in an ultrasound image (at least, one that

has not been processed nonlinearly [11]). A region with CNR > 1 is considered to be visible [9].

As will soon be evident, regions in acoustic shadows cast by breast cancer tissue often have CNR

values lower than 1 - we thus use the CNR to distinguish between the contrast of various regions

that all appear undetectable to the naked human eye.

The natural course of action is to determine a separate CNR threshold value (TCNR) for regions

in acoustic shadows cast by breast cancer tissue such that I can confidently claim a shadowed region

with CNR > TCNR hosts additional breast cancer tissue. This threshold is specific to abnormalities

with attenuation similar to that of MCF-7 breast cancer tissue.

A cancerous region directly in the shadow of another will have a lower CNR than the same

cancerous region only partially in the shadow of another, and so the TCNR for the first case should

be lower to compensate. Additionally, ultrasound waves approaching a cancerous region after being

attenuated by a long cancerous region will be weaker than if the shadowing region is shorter. The

TCNR for this case should also be lower to compensate for this effect. The TCNR thus depends

on the relative locations of the tissue casting the shadow, or the “Shadow Caster” (SC) region, and

the cancerous “Target Region” (TR) hidden in the acoustic shadow cast by the SC.

I outline an additional quantitative test for patients known to harbor breast cancer tumors

predicted to metastasize: determine the CNRs of many subregions of shadowed regions. If any of

these subregions (henceforth “regions of detection” (RoD)) have CNR exceeding the TCNR for the

specific RoD, breast cancer tissue is present in the RoD. (The distinction between the TR and the

RoD is subtle: the RoD is a region surveyed for the existence of cancerous tissue where it might

not exist, while the TR specifically refers to the cancerous tissue present in that region when it is

assumed that cancerous tissue is present in the RoD.)

This paper focuses on determining the TCNR as a function of both the length of the SC through

which waves are attenuated and the relative positions of the SC and RoD. This is done by moving

the SC and measuring the CNR of a fixed RoD that sometimes hosts a TR. Clinically, the position

of the SC would be fixed and the RoD would be moved around, but it is easier to simulate the
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situation the other way around. The important quantity is the relative position between the SC

and the RoD, and varying the position of the SC still varies this quantity.

2 Overview and Preliminary Experiments

2.1 Preliminary Conventions and Definitions

2.1.1 Wet Lab and dry Lab

A portion of the experiment took place in a lab at the University of North Carolina at Chapel

Hill (UNC). I determined the specifications for a tissue phantom, and Ben Levy (a listed mentor)

created and imaged the phantoms because expensive equipment was involved. This portion of the

experiment is not computational in nature, and I refer to it as the “wet lab” or similarly. To

contrast, the “dry lab” portions of the experiment are exclusively computational and carried out

by me in MATLAB.

2.1.2 Brightness Mode Image

Ultrasound images are displayed on a brightness-mode: brighter regions in an image roughly

correspond to regions that reflected more waves back to the transducer. For this reason, they are

called b-mode images.

2.1.3 Axial and Lateral Directions

Any time dimensions of a region are specified, the axial dimension (how long a region is in the

axial direction) is specified before the lateral dimension (defined similarly). The axial direction is

the average direction ultrasonic waves progagate in, while the lateral direction is perpendicular to

the axial direction. Both of these directions lie in the plane of the produced image. In b-mode

images, the axial direction is vertical and increases downward while the lateral direction is horizontal

and increases rightward. The ultrasound transducer is always positioned directly above the b-mode

image, out of the imaging area. Artifacts near the top of an ultrasound image are reflections from

the ultrasound impedance matching layer used, not b-mode images of the transducer.

2.1.4 Radiofrequency (RF) Data

An ultrasound transducer, upon imaging a region of tissue returns a matrix of radiofrequency

(RF) data. These values are noisy and vary sinusoidally, so they must be processed before they

are plotted. The most important part of processing this data is enveloping it, which results in

enveloped radiofrequency data (ENV data.) Plotting ENV data on a brightness mode results in

the b-mode images described previously.
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Figure 1: A general procedure to be followed, following the paper as far as data collection

2.2 Justification of Computational Ultrasound Methods

The experiment to be detailed is meant to compare quantitative characteristics of a large number

of geometrically-distinct configurations of tissue. It is not feasible to physically create all such

configurations. It took around 8 hours for my mentor to create and image the tissue phantoms

used to create a single calibration image; my experiment considers 3948 such images created 10

times each. The materials used to create the phantoms were also fairly expensive. I thus turned to

computational methods. A large concern for simulated ultrasound experiments is the preservation of

speckle — the small-scale fluctuation in how a b-mode image appears due to small-scale interactions

of ultrasound waves with small tissue cells. The Field II software for MATLAB models the speckle

quite well, and so was chosen for the simulation.

Figure 1 displays an outline of our procedures to explain how observations from the wet lab will

be used to calibrate parameters of the dry lab.

3 Calibration Experiment

3.1 Outline of Procedure

The first step in simulating the effects of shadows cast by breast cancer tissue is to determine

both the degree to which shadowing occurs and the natural brightness of breast cancer tissue in

b-mode images. If breast cancer tissue appears very bright in clinical images, for example, it is
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possible the shadowing effect is comparatively not powerful enough to significantly decrease the

visibility of tissue.

A variety of data is present on the MCF-7 breast cancer line, and so we survey phantoms

of this particular breast cancer. It is known that the MCF-7 breast cancer line has acoustic

attenuation α = 1.56 dB/cm/MHz [15] and that healthy human tissue has acoustic attenuation 0.3

dB/cm/MHz [8]. Field II only allows for the background attenuation to be specified. Additionally,

we cannot simply “code in” a signal loss of 1.56 dB/cm/MHz in the SC region because the specified

attenuation is not that of the ENV data but that of ultrasound waves. The fundamental difficulty

here is conversion between ENV data and values in the literature. Field II allows us to specify

“Brightness Coefficients” (BCs) for our data, but these are just a proxy for the resultant ENV data

produced in the simulated image. The software lets us specify the data values it will output instead

of the physical values that go into creating such data. Pham et al. have documented some loosely

related conversion values [10], but they are very general and are not sufficient for my purposes. For

this reason, I chose instead to image phantoms tissue in a wet lab. The planned procedure was to

extract the ENV values present in the resulting wet lab (calibration) image where the cancerous

tissue was and to use them to specify BC values for further simulations in Field II.

Field II lacks the ability to produce the true acoustic shadowing effect due to software limi-

tations, so the characteristics of the acoustic shadows of cancer-cell clusters I seek must also be

observed in the calibration image so they can be modelled in dry lab simulations.

3.2 Wet Lab Parameters

We include for purposes of replication the parameters used for simulation. We used an Ultra-

sonix L14-5/38 linear array transducer centered at 7.2 MHz at an elevation of 4 mm at an imaging

frequency of 10 MHz with elements having a width of 0.2798 mm, a pitch of 0.3048 mm, a kerf-value

of 0.025 mm, a fractional bandwidth of 70%, and focused 25.0 mm axially from its center. The

imaging area has dimensions 29.5 mm x 38.0 mm and is a cross-sectional subregion of a much larger

surrounding region. The transducer is shown in Figure 2.

Figure 2: The Ultrasonix L14-5/38 linear array transducer used in the calibration experiment
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Figure 3: Calibration image (wet lab)

The imaging area contains an SC square lesion of side-length 10.0 mm centered 110 mm axially

and 180 mm laterally, and a directly posterior “Target Region” TR square lesion of side-length 6.30

mm centered 250 mm axially and 180 mm laterally. These regions of tissue phantoms have acoustic

attenuation similar to those of MCF-7 breast cancer tissue, while the surrounding background

tissue phantoms have acoustic attenuation similar to that of normal human tissue. This geometry

of scatterers is henceforth referred to as (G). The produced image is shown in Figure 3.

To create tissue phantoms of varying attenuation, I sent acoustic attenuation values to Ben

Levy, who used a procedure detailed in Madsen et al. [7] and sent me the resulting data. The

TR and SC lesions were created to have acoustic attenuation α = 1.56 dB/cm/MHz to match

the acoustic attenuation of MCF-7 cancer cells [15], and the background has acoustic attenua-

tion 0.3 dB/cm/MHz to match the commonly accepted acoustic attenuation of human tissue [8].

The graphite concentrations my mentor used to create the phantoms were the most important in

determining acoustic attenuation values [7], and so are displayed in Table 1.

Table 1: Acoustic attenuations vs graphite concentrations used in solution
Graphite Concentration (g/mL) Acoustic Attenuation

(dB/cm/MHz)

Background Speckle 0.048 0.3

MCF-7 Phantom 0.236 1.56

3.3 Limitations of Calibration Data

The bright lines present in the data here correspond to boundaries between regions of differing

concentrations of gelatin, graphite, and n-propanol. They are not seen in clinical b-mode images.

The reason for these artifacts is not yet understood. Whatever the case may be, the acoustic

shadowing data that I use for calibration extends from the uppermost bright white line to the

second white line from the top of the image. For all dry lab purposes, I omit the data present at

the locations of these white lines because they are not observed in clinical images. This limitation
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gives me 10 mm of data in the axial direction to calibrate the ENV data in acoustic shadows; in

the dry lab, the entire RoD must always fall within these 10 mm.

3.4 Calibration

(G) was imaged by the transducer. The resultant RF data was enveloped. The ENV data was

recorded in 3 regions: (A), a region with axial bounds 15 mm - 20 mm and lateral bounds 27 mm

- 32 mm, far from any shadowing effects to provide a baseline for the RF data corresponding to

regions of background speckle; (B) a region with axial bounds 6.3 mm - 7.5 mm and lateral bounds

17.5 mm - 18.5 mm, where the MCF-7 phantom is present and not expected to be significantly

shadowed to calibrate the natural brightness of the MCF-7 regions; and (C) a region with axial

bounds 8 mm - 15 mm and lateral bounds 16 mm - 20 mm with high attenuation to calibrate the

effects of acoustic shadows. The three regions are outlined in Figure 4.

Figure 4: Three regions used for calibration

I then simulated a linear-array transducer in Field II with parameters similar to those present

in the physical L14-5/38 transducer: an imaging frequency of 10 MHz, a pitch of 0.3048 mm, a

kerf-value of 0.025 mm, a fractional bandwidth of 70%, and focused 25.0 mm axially from its center.

This is also, incidentally, the same transducer used for all dry lab components of this paper.

To simulate scatterer geometries in MATLAB, I used a technique specified in Jørgen Arendt

Jensen et al. 1997 [4]; as a 2d matrix of values corresponding to a 2d collection of discrete “scat-

terers” with varying BCs. Scatterers are models of cells scattering acoustic waves, with the entries

in the matrix being related to the ENV data that will be produced by the particular region corre-

sponding to the entry.

I simulated a 30.0 mm x 30.0 m square imaging area to optimize the accuracy of mathematical

functions used by Field II. The imaging area contains an SC square lesion of side-length 10.0 mm

centered 10.0 mm axially and 15.0 mm laterally. No TR was simulated to emphasize that no data

from that region of the calibration image was used for calibration. The bounds of regions (A), (B),

and (C) in simulated images were adjusted to account for the adjustment of the dimensions of the

imaging area. In simulated images used for calibration, (A) has axial bounds 15.0 mm - 20.0 mm
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and lateral bounds 22.0 mm - 27.0 mm; (B) has axial bounds 6.0 mm - 7.0 mm and lateral bounds

14.5 mm - 15.5 mm; and (C) has axial bounds 8.0 mm - 15.0 mm and lateral bounds 13.0 mm -

17.0 mm

First, I sought to calibrate the natural (before shadowing) brightness of the SC and TR regions

with respect to the background tissue. To do so, I computed the ratio between the average ENV

data in (B) and the average ENV data in (A) in the calibration image. The computed ratio was

1.4610. I then tuned the parameter corresponding to the relative brightness of regions modelling

MCF-7 tissue in a dry lab image to match the observed (B):(A) ratio. I did this by iteratively

changed the BCs of the SC region in Field-II, starting at BC = 1.4 and ending at BC = 1.5

with a stepsize of ∆BC = .005, recording the corresponding (B):(A) ENV ratio in the average of

10 simulated b-mode images corresponding to any particular BC. Figure 5 shows the relationship

between (B):(A) ENV ratios and BC values. BCs of 1.463 and 1.468 resulted in (B):(A) ENV ratios

near 1.4610, and linearizing the plot between those two points suggests that setting the BC of the

SC to BC= 1.47± .01 best models the data present in the calibration image. I henceforth use a BC

of 1.47 for the SC (and eventually, the TR) in all further simulations. Figure 6 shows an example

of using this BC value to simulate (A) and (B).

Figure 5: The (B):(A) ENV ratios are recorded for a variety of BCs. It turns out that BCs do a
good job at specifying ENV ratios.

3.4.1 Acoustic Shadow Model

My model of acoustic shadows is as follows: I take (C) in the calibration image and in the

dry lab image (with dimensions 7 mm x 4 mm in both images) and partition it into 7 subregions

(C1), (C2), . . . , (C7) (with subscripts increasing with axial distance) of dimensions 1 mm x 4 mm.

For each subregions in the calibration image, I tune the corresponding BC in the dry lab image

such that the ENV data in Ci in the calibration image matches the ENV data for each Ci. The 7

subregions of (C) in the calibration image are shown in Figure 7.

My results calibrate a model of the acoustic shadow as it affects regions of MCF-7 tissue

phantoms (as (C) is entirely composed of MCF-7 tissue phantoms). In future simulations, segments
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Figure 6: The calibration images with and without labelled regions are shown side-by-side with
corresponding simulated b-mode images that match the (B):(A) ENV ratio. Note that (A) and
(B) in the calibration image have dimensions similar to (A) and (B) in the simulated image. (C)
corresponds to the shadow region and has not thus been calibrated, and is thus not outlined in the
simulated image. The white-line artifacts are not present in the dry lab image.

of the shadow will also fall upon regions of healthy tissue. For these cases, I extrapolate that the

effect of a particular portion of an acoustic shadow on an arbitrary region of tissue is to multiply

BCs in the region of tissue by some constant factor. For example, the shadow will multiply BCs in

(C1) by one value, all BCs in (C2) by another, and so on, independent of the natural brightnesses of

the regions to which it is applied. These (7) values will henceforth be called “shadow parameters”

(SPs) and will be computed for each Ci as follows:

SPi =
BCi

BC ′
i

,

where BCi is the computed BC for the region Ci and BC ′
i is what the BC in region Ci would be

if there was no shadowing. BC ′
i = 1.47 for all i, as was measured in the calibration image. This

allows my shadow model to decrease the visibility of regions of healthy tissue as observed in real

images. I computed the ratios of the average ENV data for each (Ci) and in (A). I then computed

the BC value for each Ci that will result in a matching ENV ratio in simulated images, simulating
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Figure 7: C1, C2, . . . , C7 are shown, outlined in green. C1 is the region closest to the transducer
(the uppermost region). (C) only begins after 3 mm of shadowing region — before that point, the
effective brightness is considered unaltered for simplicity of separating (B) and (C).

and averaging 10 images for every BC value before computing the BC value as was done for region

(B). I compute the ratio between the calculated BC value and the natural BC value (1.47) for each

subregion - this will be the factor by which I multiply BCs in regions that are supposed to be

shadowed to introduce the shadowing effect in future simulations. Results are displayed in Table

2.

Table 2: Observed mean ENV ratios, computed brightness coefficients, and computed shadowing
parameters are displayed for all 7 subregions of C.

i 1 2 3 4 5 6 7

ENV Ci

ENV A
0.9416 0.8336 0.6978 0.6723 0.6206 0.5409 0.5217

BCi 0.94 0.84 0.69 0.67 0.62 0.54 0.52

SPi(=
BCi
1.47 ) 0.64 0.57 0.47 0.46 0.42 0.37 0.35

It should be noted that the BC of a region in roughly specifies the ratio between the ENV data

in that region and the ENV data in a distant, baseline region in the dry lab image.

Using the determined SPi values, I simulated an ultrasound image with acoustic shadows in

(C) matching ENV values from the calibration image. The image also matches the (B):(A) ENV

ratio measured in the calibration image and is shown in Figure 8.

4 Methods and Results

I now seek to simulate an SC with the previously calibrated trailing shadow and an RoD

potentially containing a TR, keeping the RoD in place and moving the SC. Since I only have 10
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Figure 8: A simulated image matching ENV data from (A), (B), and (C).
The shadow effect is clearly visible in (C), and was not applied outside of (C). (C) is outlined in

green.

mm of data calibrating the acoustic shadowing effect, I choose the RoD to be a square region of

side-length 4mm. This allows for the RoD to fall completely within the shadow of the SC for a

variety of dimensions and positions of the SC.

Recall that my experiments vary the position of the SC and not the RoD, even though in clinical

settings the position of the SC is known and the RoD will be varied. For each experiment, the RoD

is held in place as a square region centered at 25 mm axially and 15 mm laterally with sidelength

4 mm. This region is the in-region used for CNR calculations. The focus of the transducer is

incident with the center of the RoD. When the TR is present, it is located in the RoD with the

same dimensions and position as the RoD. In all simulations, the relationship between the CNR of

the RoD with the location of the SC will be measured.

In changing the relative lateral position of the SC and the RoD or the axial dimension of the

SC, a few of the SCs parameters remain constant. The SC is modelled as a rectangular region of

tissue with lateral dimension 4 mm. (In Experiment 1 and parts of Experiment 3, it is modelled as

a square region.) The SC extends from a possibly varying initial axial position to an axial position

of 22.7 mm. This ending axial position is 0.3 mm from the upper axial bound of the RoD. The SC

casts a shadow 10.0 mm in the axial direction as calibrated in the calibration image. I measure the

CNR of the RoD as different portions of it are placed in the shadow of the SC.

As a precursor to the bulk-image experiments, I first simulate three images to develop an idea of

how CNR values differ between shadowed regions based on whether or not the regions host MCF-7

tissue. Figure 9 shows the result when the SC and RoD are laterally aligned and when the SC is a

square region of side length 4 mm in each of three cases: 1) The shadows are absent and the TR

is present, 2) The shadows are present and the TR is absent, and 3) The shadows are present and

the TR is present. The magenta and yellow regions are the “in” and “out” regions, respectively,

used to compute the CNR. (The out region used for calculations is the result when the two yellow

regions are combined, resulting in an out-region with the same dimensions as the in-region.)
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Figure 9: Examples of images with very different corresponding CNR values. Magenta outlines
the “in-regions” and yellow outlines the “out-regions” used for CNR calculations. The RoD in the
upper left image is visible; it has a CNR of 1.47. The RoD in the upper right image is distinctly
darker from its surroundings; it has a CNR of -2.10. The RoD in the lower image is not quite
visible, but speckle is somewhat brighter than in the upper-right image; it has a CNR of -1.40. In
future images, I omit outlines of the in and out regions used to compute CNR values for image
clarity.

4.1 Variation of CNR with Relative Lateral Positions of SC and RoD

Experiment 1 required approximately 5 minutes to simulate per run. All reported CNR values

are average measured CNR values over 10 runs. In this experiment, the SC is a square region

of side-length 4mm, axially centered about 20.7 mm. The lateral bounds of the SC are varied as

detailed in Table 3.

Initial Axial Bounds (mm) 18.7 - 22.7

Initial Lateral Bounds (mm) 13.0 - 17.0

Final Axial Bounds (mm) 18.7 - 22.7

Final Lateral Bounds (mm) 9.0 - 13.0

Table 3: The Bounds of the SC in Experiment 1
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The movement of the SC occurs in step-sizes of 0.1 mm to the left. ( 1.5−1.1
.01 + 1 = 41 trials

are expected — rounding effects due to conversion factors increment this count by 1.) Results are

displayed in Figure 10. Examples of b-mode images corresponding to the first and last data points

in Figure 10 in the cases of an absent TR and a present TR are shown in Figure 11.

Note that CNR values in the Absent TR plot rise to 1 when the shadow obscures the out region,

making the RoD look brighter by comparison.

4.2 Variation of CNR with Relative Axial Positions of SC and RoD

Experiment 2 required approximately 6 minutes to simulate per run. All reported CNR values

are average measured CNR values over 10 runs. In this experiment, the SC is a rectangular region,

laterally centered about 15.0 mm. The SC is extended axially as detailed in Table 4:

Initial Axial Bounds (mm) 22.0 - 22.7

Initial Lateral Bounds (mm) 13.0 - 17.0

Final Axial Bounds (mm) 17.5 - 22.7

Final Lateral Bounds (mm) 13.0 - 17.0

Table 4: The Bounds of the SC in Experiment 2

The axial extension of the SC occurs in step-sizes of 0.1 mm upwards. The SC is always

laterally centered above the RoD. My results are displayed in Figure 12. Examples of b-mode

images corresponding to the first and last data points in Figure 12 in the cases of an absent TR

and a present TR are shown in Figure 13.

4.3 2-Dimensional Relationship Between Relative Positions of SC and ROD

and the CNR of the RoD

Experiment 3 required approximately 60 minutes to simulate per run. All reported CNR values

are average measured CNR values over 10 runs.

In this experiment, the SC is both moved in the lateral dimension and extended in the axial

direction. The lateral bounds of the SC are varied and the axial length of the SC is extended as

detailed in Table 5.

Initial Axial Bounds (mm) 22.0 - 22.7

Initial Lateral Bounds (mm) 13.0 - 17.0

Final Axial Bounds (mm) 17.5 - 22.7

Final Lateral Bounds (mm) 9.0 - 13.0

Table 5: The Bounds of the SC in Experiment 3

The movement of the SC occurs in step-sizes of 0.2 mm to the left and extensions of the SC

occur in step-sizes of 0.2 mm upwards.
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This experiment details the how the CNR of the RoD changes as the SC is moved in two

dimensions. My results are displayed in Figure 14. At a glance, the same, previously observed

patterns persist: the CNR increases with the lateral displacement of the SC and decreases with

the axial dimension of the SC. However, note that at high lateral displacements the CNR increases

with the axial dimension of the SC! Although more axial extension equates to more shadowing,

increased shadowing on regions near but not overlapping with the RoD increase its visibility by

comparatively reducing the visibility of its surroundings.

4.4 Models

It should be noted that models developed here can only be used for interpolation and not

extrapolation. If I extended data from Figure 10 any further, the line would slightly dip and then

flatten out. This is because when the SC is laterally distant from the RoD, the shadowing effect

is negligible. I am unable to extend Figure 12 more than 0.2 mm to the right, because doing so

would require more than 10 mm of calibrated shadow data.

4.4.1 Data Fitting

Our end goal is to arrive at TCNR values as a function of the relative lateral positions of the

SC and RoD and of the axial dimension of the SC. It is not very useful to use a discrete set of

threshold values, especially since the produced data sets seem easy to interpolate. We thus begin

by fitting the plots present in Figures 10 and 12.

Figure 10 and Figure 12 appear to be well-modelled by linear fits. I propose piecewise linear

regressions for the 4 data sets present in these two figures. We define xlat as the relative lateral

displacement between the SC and RoD in mm. We define xax as the axial dimension of the SC in

mm. Units are omitted in the table. Table 6 includes piecewise linear fits for data presented in

Figure 10, and Table 7 includes piecewise linear fits for data presented in Figure 12. The minimal

r2 correlation coefficient value among the two segments in each piecewise fit is recorded.
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Figure 10: The variation of the CNR of the RoD with the lateral position of the SC relative to
that of the RoD is displayed when the TR is absent (Blue) and present (Brown.) The upper axial
bound of the SC is held constant at 4mm.

Figure 11: Four images corresponding to data points in Figure 10 are shown.
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Figure 12: The variation of the CNR of the RoD with the axial dimension of the SC is displayed
when the TR is absent (Blue) and present (Brown). The measured CNR is greatest when the SC
has small axial dimension.

Figure 13: Four images corresponding to data points in Figure 12 are shown. The SC is outlined

in white to emphasize the fact that the axial dimension of the SC is not constant.
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The CNR plots in two dimensions have many (more than the 4 that would be expected by

simply combining Tables 6 and 7 mathematically) roughly planar regions, and I do not consider it

useful to define all of these regions in a piecewise manner.

Figure 14: The variation of the CNR of the RoD with the relative lateral location and axial

dimension of the SC is displayed when the TR is absent (Blue) and present (Green.) The patterns

measured in experiments 1 and 2 persist, with one major exception - when the SC is laterally

displaced far from the RoD, the CNR increases with Relative Axial Distance.

CNR vs xlat r2

Figure 10: Absent TR CNR(xlat) =

1.01xlat − 2.04 if xlat < 1.98

0.56xlat − 1.12 if 1.98 < xlat < 4
0.998

Figure 10: Present TR CNR(xlat) =

1.17xlat − 1.33 if xlat ≤ 1.98

0.71xlat − 0.39 if 1.98 < xlat < 4
0.998

Table 6: Piecewise linear fit with regression coefficients for Figure 10. xlat is measured in mm
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Figure 15: Threshold CNRs determined by Tables 6 and 7 as well as empirically calculated from
Figure 14. The 3-dimensional image has been rotated to better show the TCNR surface.

CNR vs xax r2

Figure 12: Absent TR CNR(xax) =

−0.52xax − 0.454 if xax < 2.41

−0.18xax − 1.29 if 2.41 < xax < 5.21
0.990

Figure 12: Present TR CNR(xax) =

−0.72xax + 0.81 if xax < 2.41

−0.25xax − 0.32 if 2.41 < xax < 5.21
0.990

Table 7: Piecewise linear fit with regression coefficients for Figure 12. xax is measured in mm.

4.4.2 Thresholds

If we use the fits derived in the “Present TR” portions of Tables 6 and 7 as our threshold values,

we will fail to detect MCF-7 regions that happen to be appear slightly less bright on b-mode images

than our simulated data. Likewise, if we use the fits derived in the “Absent TR” portions of Tables

6 and 7 as our thresholds, we will flag every shadowed region as hosting MCF-7 tissue.

For experiments 1 and 2, I define the Threshold CNR (TCNR) to be a 1:3 weighted mean of the

Absent TR and Present TR piecewise fits present in Tables 6 and 7 respectively. For the first two

experiments, I consider RoDs with a CNR value more than 3 times closer to the “Present TR” data

set than the “Absent TR” data set. For experiment 3, no analytical fit was determined - I define

the TCNR in this case as a 1:3 weighted mean of the “Absent TR” and “Present TR” surfaces in

Figure 14.

The TCNR for experiment 1 is computed to be

TCNR(xlat) =

1.13xlat − 1.51 if xlat < 1.98

0.67xlat − 0.57 if 1.98 < xlat < 4

The TCNR for experiment 2 is computed to be

TCNR(xax) =

−67xax + 0.49 if xax < 2.41

−0.23xax − 0.56 if 2.41 < xax < 5.21

Figure 15 shows plots present in Figures 10, 12, and 14 with threshold lines drawn in.
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5 Discussion

The results from the wet lab section of the study offer values of enveloped radiofrequency data

as produced by healthy tissue and MCF-7 tissue. This data informed the larger dry lab study,

which offers threshold CNR values for the detection of MCF-7 tissue in acoustic shadows. If CNR

values above these observed values are detected in a region of acoustic shadow, it is likely that

the region hosts MCF-7 tissue. As expected, when more shadowing is present or when the shadow

directly obscures the RoD, CNR values are the lowest. The 2-dimensional dependence of TCNR

on the dimensions of the SC and the relative lateral position of the SC and RoD has the potential

to be used to search a large 2-dimensional region of acoustic shadows for MCF-7 tissue.

The results from this study indicate that the TCNR values to be used for detection of MCF-7

tissue in acoustic shadows are strongly linear in both the relative displacement of the SC and the

TR and the axial dimension of the SC, as linear fits relating these variables had strong correlation

coefficients.

The results from Experiment 2 have the potential to be used by a clinician trying to determine

the true (axial) size of a region of malignant tissue. The RoD and SC have the same lateral bounds,

and save for a 0.3 mm axial gap can be considered to be parts of a cohesive MCF-7 tissue unit. This

introduces a useful application. A clinician, in observing a single (not necessarily metastasizing)

region of breast cancer tissue with attenuation similar to that of MCF-7 tissue, may be able to

determine its axial dimension by computing the CNR of various regions inside the acoustic shadow

cast by the same region. As an outline, they will model the single region to be composed of an

SC region of unknown axial dimension combined with a posterior TR region (with unknown axial

position). Then, they will iteratively compute the CNR for increasingly axially distant regions of

tissue, until the CNR drops under the corresponding TCNR value. At this point, the MCF-7 tissue

will be considered to end.

Due to the limited nature of calibration data, I was only able to calibrate the acoustic shadowing

effect when the TR was directly beneath the SC. However, it is expected that the 0.3 dB/cm/MHz

attenuation that might occur if larger regions of healthy tissue separate the SC from the RoD will

not significantly impact results. Similarly, the usage of squares for tissue regions in place of more

complicated and accurate scatterer geometries is not expected to impact results [16].

If highly experimental uses of ultrasound to treat breast cancer become mainstream methods

of cancer treatment [5], the techniques discussed here have the potential to locate particularly

harmful regions of metastasizing breast cancer tissue. This would allow ultrasound to be used as

an all purpose tool to locate (using Ultrasound Imaging as in this paper), identify [18], and treat

[5] breast cancer.

There are many natural ways to refine the model used here. The calibration of the shadowing

effect can be made more precise by including more subregions Ci. Calibration data corresponding

to MCF-7 phantoms shadowing healthy tissue can be created in the wet lab to avoid extrapolating

on the shadow’s effects on healthy tissue. The bright regions present in the calibration image should
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be further investigated.

This paper explored only the highly specific case where MCF-7 tissue shadowed other MCF-7

tissue in a specific setting, but sets the precedent for many more potential studies. The relationship

between the parameters of the transducer and TCNR values can be explored. The work can be

tested in a clinical setting, using formalizations of the outlines for clinical use presented in this

paper. The effects of other highly shadowing breast cancer lines can be calibrated, with similar

computational experiments run, and resultant TCNR thresholds can be compared. The techniques

used in this paper can be adapted for use with non-breast cancers. More generally, techniques

discussed in this paper can be used with other imaging systems for which acoustic shadowing is a

major concern.
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