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I pick cards randomly and solve them. This document will likely not be updated.

A ♣ What is the expected value of a randomly drawn card from a standard deck? If you draw two cards randomly,
what is the expected value of their sum?
Solution. The EV of a random card is 7 . Then, the EV of the sum of two random cards is (by LOE) 14 .

2 ♣ On average, how many cards will you need to draw from a deck of cards until you draw the A♣?
Solution. With replacement, we have a 1 in 52 chance of drawing it at any time and the expectation of the associated
bernoulli distribution is 52 .

Without replacement, an equal number of cards are expected to be on either side of the A♣ and so the expected
number of cards to draw to draw the A♣ is

51

2
+ 1 =

53

2

3 ♣ 20 people are each holding a playing card. These cards are all shuffled and redistributed randomly. What is the
expected number of people who get their original card back?
Solution. Let λi be an indicator variable for person i getting their card back. We seek

E(

20∑
i=1

λi

= 20λ1

= 20
1

20

= 1 .

4 ♣ 10 people are sitting in a circle. Each has their own deck. They each draw a random card. If the card is red,
they turn to shake hands with the player to the left, Otherwise, they turn to shake with the person to their right.
How many handshakes are expected to succeed?
Solution. Any particular pair of consecutive people in the circle is expected to shake 1

4 of the time, and so assigning
indicators to each pair and finding the expectation of the sum of these (which is the sum of the individual expectations

of these by linearity of expectation) yields
5

2

5 ♣ When inserting two jokers into the deck we drop the 5♣ on the floor. We then shuffle the deck. What’s the
expcted number of cards between the two jokers?
Solution. There is an expected 17 cards before the first joker, 17 between the first and second jokers, and 17 after
the second joker; by symmetry, a card is equally likely to be in any three of these.

(To see this better, for any permutation of the 53 cards, let us view it as x cards followed by (say) the starry
joker, followed by y cards followed by (say) the cloudy joker, followed by 51 − x − y cards. So it might look like,
with X representing a permutation of size x, Y representing a permutation of size y, and 51−X − Y representing a
permutation of size 51− x− y,

X|Js|Y |Jc|51−X − Y

But we can then move the top two components to the bottom in a clearly bijective transformation,

Y |Jc|51−X − Y |Js|X

and again:
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51−X − Y |Js|X|Jc|Y.

One can note that if we perform this transformation again, we do not get back the initial permutation (We get
the initial permutation with Js, Jc swapped.) But then applying it 3 more times gets back the initial permutation.
So we can partition all permutations into groups of size 6, and now clearly the average value of the first pile is 17 in
each of these piles and thus must be 17 for the set of all permutations.)

6 ♣ You have a pile of a large number of cards (equal numbers of each suit.) How many cards on average do you
have to draw before you have at least one of each suit?
Solution. Let An be the number of draws after drawing n− 1 suits to draw a new suit. The time we seek is equal
to A1 + · · ·+A4, so our expectation is

E(A1 + · · ·+A4) = E(A1) + · · ·+ E(A4).

It takes one draw to get the first suit, 4
3 for the second, 4

2 for the third, and 4
1 in expectation to get the fourth. We

thus end up with an expected

25

3

draws to draw all 4 suits.

7 ♣ While showing off a fancy shuffling trick, you accidentally drop almost half the deck down a storm drain. You
want to figure out which cards you still have, so you try to match up cards with the same rank and color (As with
Ac, for example.) What is the expected number of matches found?
Solution. Every card has a partner. We want to find the expected number of pairs present in the top 34 cards of a
deck.

Note the number of pairs present in the top 34 cards of a deck is

1

2

34∑
i=1

λi,

where λi is 1 if card i’s partner is in the first 34 cards and 0 otherwise.
But then the expectation we seek is

E(
1

2

34∑
i=1

λi) =
1

2
(34)E(λ1)

= 17 ∗ 33

51

= 11

8 ♣ Arrange the thirteen clubs in random order. How many times do you expect the sequence to change direction
(increasing to decreasing or vice versa?)
Solution. This is equal to the expected number of elements that either exceed both their neighbors or are less than
both of their neighbors. For any position besides the first or last, the likelihood of the card at that position satisfying
these constraints is 2

3 . Then, the expected number of directional shifts is

22

3
.

(This implicitly assigns an indicator variable to each internal position being a local extrema, then sums the expec-
tations of these indicators.)
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9 ♣ A very large deck of 2N + 1 card is cu at one of its 2N gaps randomly. On average, how many cards are in the
smaller pile? What is the expected ratio of the size of the larger pile to the size of the smaller pile?
Solution. For the first problem, we can just case on the number of cuts in the smaller pile based on where the cut
is:

EN (X) =
1 + 2 + · · ·+N +N + (N − 1) + · · ·+ 1

2N
=

N + 1

2
.

The expected value of the ratio of the size of the larger pile to the size of the smaller pile is (WLOG the cut is
in the first half,)

N∑
i=1

2N−i
i

N

=

2N
N∑
i=1

1
i −N

N

= 2HN − 1 ,

and as N → ∞ this approaches

≈ 2 log n+ 0.154

where we crudely approximate the Euler-Mascheroni constant.

10 ♣. Draw cards from a shuffled deck until you draw the Jc, Qc, and Kc. How many draws will it
take on average?
Solution. The three cards partition the deck into 4 piles of cards, each of which have the same expected size. The
expected size is thus 49

3 , and then the expected number of draws among the first three piles is 147
4 . Then, the expected

number of draws to get all three of these cards is
159

4

J ♣ We have 2N cards: 1 through N of both clubs and spades. Remove the 1♣ and a random ♠. Remove a pair
of cards: the 2♣ and the associated ♠ (the 2♠ if you can find it, or else a random ♠). Continue similarly (with the
3♣, 4♣ , etc.) until all cards are paired and removed. What’s the chance N♣ and N♠ form a pair? On average,
how many pairs have matching rank?
Solution. For the first problem, note that if player 1 goes to the u of spades, then everything up to u− 1 of spades
gets filled in. Then, if we thereafter have the u of clubs map to the v of spades for v ̸= u, everything from u to v− 1
is filled in.

Let’s call x1 the rank of the card that the 1♣ is paired with, and x2 the rank of the card that the x1♣ is paired
with, and so on. Note that when xτ equals 1 or n, the cards from xτ+1 to n−1 ♣ get paired with their corresponding
♠ card. Then, n♣ will get paired with n♠ if xτ = 1 and with 1♠ if xτ = n. These events occur with equal likelihood,
so the solution to the first question is

1

2
.

For the second part, let us have for each x♣ an indicator variable λx equal to 1 if it is paired with itself and 0

otherwise. We seek E(
N∑
i=1

λi) =
N∑
i=1

E(λi).

The probability λi = 1 is the probability that the sequence xj equals 1 or i + 1, . . . , n before it equals i (the
sequence must displace i♣ before it fixes i♣ by either overshooting it or equalling 1.) The first value among

{1, i, i+ 1, . . . , n}
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to be taken on by the sequence is equally likely to be any of these values by symmetry, so the probability it is
exactly i is

1

n− i+ 2

and so the expecation of λi is

1− 1

n− i+ 2

except for i = 1, where the sequence cannot equal ”1” before ”1” and the expectation of λ1 is

1

n
.

Then,
n∑

i=1

E(λi)

=
1

n
+

n∑
i=2

1− 1

n− i+ 2

=
1

n
+

n−2∑
i=0

1− 1

n− i

=
1

n
+ n− 1−

n−2∑
i=0

1

n− i
=

1

n
+ n− 1− 1

n
−

n−1∑
i=2

1

i

= n−Hn−1

Q ♣
Solution.

K ♣ You and I are playing with a strange deck of cards that consists of the 1 through N ♣ s. I remove r cards from
the deck. Without knowing which r I removed, how large of a sum-free subset can you promise me you can find in
your cards?
Solution. Our answer is

f(N,R) = ⌊N −R

2
⌋+ 1 ,

with f(N,R) : R ≥ N = 0.
Firstly, note the solution holds for r = 0; just take all the odd numbers (n odd) or the last n+2

2 numbers (n even).
We can’t do better as whatever the largest number is (say U ,) we can only pick one of 1, U − 1, 2, U − 2, etc. which
leads to at most our expression.

We now attempt to proceed inductively. Note that f(n, r) ≥ f(n − 1, r) : just ignore the nth number and
draw from the mapping from |s| = r to |u| ⊆ s, |u| = f(n − 1, r) with u sumfree guaranteed by induction. Also,
f(n, r) ≤ f(n− 1, r − 1) : if the last number is removed, we can do only as well as in the f(n− 1, r − 1) case.

The latter rule directly gives f(N,R) ≤ f(N,R) = ⌊N−R
2 ⌋+ 1

for nontrivial pairs (N,R.)
Finally, proceed by (R, then N) induction on the problem. Suppose our formula first does not hold for some

(N ′, R′). Then note that N ′ − R′ must be even, as in the odd case we directly get the result from our lower and
upper bounds via induction.

I do not know how to show this inductive step.

A ♢ A standard deck of cards is shuffled. What is the chance that the third card from the top is either a diamond
or an ace?
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Solution.
4

13

2 ♢ What is the probability the top 13 cards are all of the same suit?

Solution.
4(
52
13

) =
1

158753389900

3 ♢ We shuffle a deck ofo cards and I deal the 3, 4, and 5 of diamonds. If the next card is between 3,8 inclusive,
what is the probability that its a diamond?
Solution. There are 21 cards left of this sort, of which 3 are diamonds, for

1

7

4 ♢ The 2,3,4 are face down in random order. You want to select the 4. You point to the leftmost card. A gust of
wind blows, flipping the rightmost card and revealing its the 2. Do you switch your choice?
Solution. This is not actually the Monty Hall problem. The wind does not care what card it flips, and WLOG it
always flips the right card, even if the right card is the 4. So the probability the leftmost card is the 4 given the wind
flips the rightmost card to a 2 is

1
6
2
6

is 1
2 , and we

gain nothing from switching.

If the 4 were somehow the heaviest and the wind were guaranteed to flip a non-4 card, we could apply Monty-Hall
esque analysis.

5 ♢ I have all the diamonds. You randomly choose one of the cards I have without looking at it. I look at my cards
and then place 11 of them face up. The 5 of diamonds is not among them. You and I both want the 5 of diamonds.
Should you trade the card you initially chose for my remaining card?
Solution. Let us first make a short note; we assume (as in monty hall: see https://en.wikipedia.org/wiki/Monty Hall problem)
the game show host is restricted to randomly choosing 11 of the cards from the cards both not chosen by me and not
containing the 5♢ to show me. The second constaint can be shown to be optimal; if the game show host is allowed
to show you your own card when it doesn’t contain the 5♢, then their odds vastly improve. I will not solve for the
nash equilibrium of this updated game and simply assume this is a monty hall clone.

In the monty hall case, (by conditional probability and letting A be our picked card, B be the other unpicked
card,) the probability B is the 5 is

1
13

1
13 + 1

13
1
12

=
12

13
,

where we note that conditioning on B being wrong (and the fact that A is right,) the probability B is the unflipped
card is 1

13 . One important thing to note is that we cannot simply say ”since A could not be picked, we gain no new
information about A and so B ”absorbs” the probabilities of all flipped cards” which is a common misconception;
see my CMIMC TCS problem at haridesikan.com to see why this is the case. The uniform prior distribution is a
special case.

6 ♢ You are given a deck of cards that is equally likely to be perfectly shuffled or brand new. You draw the first
three cards and they are in order. How much more likely is the deck to be brand new?
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Solution. ”How much more likely” could either refer to, with p denoting the probability the deck is perfectly
shuffled, p−0.5 or p− (1−p) (or some other interpretation I’ve missed.) I will simply return p, and you can trivially
process the result.

Using Bayes’ rule yields

P (new given 3 in order) =
0.5

0.5 + 0.5 ∗ 1
52∗51∗50

=
132600

132601

7 ♢ You are holding a random card from a standard deck. If you have a diamond, you truthfully answer 90% of the
time and lie the rest. Otherwies, you truthfully answer 40 % of the time and lie the rest. If I ask you ”do you have
a diamond” and you answer yes, what is the chance you have a diamond?
Solution. Probability you have a diamond given you answered yes is

1
40.9

1
40.9 +

3
40.6

=
1

3

8 ♢ We are playing with a random deck. I remove one ♢ and some non ♢ but I don’t tell you how many! I secretly
flip a fair coin; on heads I return the missing ♢, on tails I return one of the other missing cards. You shufle the deck
and draw one card; it’s a ♢. What’s the probability my coin came up heads?
Solution. We assume that the number of nondiamonds removed is uniformly chosen from 0 to 39 (1 to 39 gives the
same result.) Then P (H|d) =

1
2

1
40

39∑
i=0

13
52−i

1
2

1
40

39∑
i=0

13
52−i ++ 1

2
1
40

39∑
i=0

12
52−i

=
13

25
.

Note whether we begin at i = 0 or 1 doesn’t matter, so the 2 interpretations of the problem give the same result.

9 ♢ Which of the following is most likely when cards are drawn with replacement from a shuffled deck: at least 1
diamond from 4 cards, at least 2 diamonds from 8 cards, or at least 3 diamonds from 12 cards?
Solution. My intuition is as follows. Let’s imagine these as continuous distributions and consider the condition for
4n draws. We want that there are more than n diamonds. Intuitively, since the step size is 1 card, this is somewhat
analogous to the probability that Sn > n

4 − C for some fixed constant C (representing the constant that is 1 card.)
If we now imagine that we can ”pseudo-apply” CLT here, the sum of N is distributed as N(n4 , σ

2n). We now seek to

maximize
∫ 0

−C
N(0, σ2n) or more simply,

∫ C

0
N(0, n). This is clearly maximized at smaller n.

Now, let’s compute.
The first is 1− 1

44 . The second is 1− 1
48 − 8 ∗ 3

48 The third is 1− 1
412 − 12 ∗ 3

412 − 66 ∗ 9
412 .

So the third is most likely to have at least the average number of diamonds. My intuition was all wrong –
this has to do with the fact that I should instead have just viewed the chance of having n diamonds of 4n cards
as continuous in n and 1 at the poles and NOT as a monotonic function in n, and should mainly not have asumed
monotonicity.
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10 ♢ You have two strange decks of cards: A has 2 diamonds and 1 spade, B has 51 diamonds and 50 spades. You
randomly draw from a deck. You can look at the color, put it back in the deck (or not) and draw a second card.
Your goal is to guess which deck is which. What strategy do you employ / what is your EV?
Solution. We make the assumption that you can only draw from one deck.

If we roll a diamond, the second pick is guaranteed to be 50-50 if we draw and we likely get no info from the
second draw. So we should put our card back in. If we roll a spade, we should probably keep the spade as the two
decks now have wildly different distributions.

Our EV is as follows: suppose we roll 2 diamonds. Then the chance we have the first deck is roughly 16/25
(Bayes rule) and we should pick deck 1. If we roll diamond/spade it is slightly more likely to be the second deck. If
we roll spade/diamond its more likely to be the first deck. If we roll spade/spade it must be the second deck.

We have enumerated our strategy. Now, the nitty gritty computation yields

1

2
(
7

9
) +

1

2
(
50

101

49

100
+

51

101

50

101
)

=
233255

367236

J ♢ Consider the following game: place the A♢− 6♢ and the A♠− 6♠ in a bag. You randomly draw cards one at
a time from the bag without replacement, putting aside matching cards as soon as they appear in you hand. The
game ends and you lose if you ever hold three cards, no two of which match. What is the chance you win?
Solution. We proceed by seeking a recurrence. Call Pi the probability you win with the A-i of two suits and the
same game; we seek P6. Note P1 = P2 = 1.

Now, if we have k pairs, we must draw some card (WLOG an A.) Now, we have n− 1 cards left.
If we draw the other Ace ( 1

2n−1 ), our probability of success is Pn−1. Otherwise, say WLOG we hold an A and a

2 (with probability 2n−2
2n−1 . Then, we MUST draw either an A or 2 the next turn ( 2

2n−2 ,) at which point (WLOG we
drew the A) we hold a 2 in our hand and the 3-n of both suits remain in the deck. But again, note this is Pn−1, as
having n− 2 pairs in the deck and a single pair split between the deck and your hand is equivalent to having n− 1
pairs in the deck; the latter state always transitions to the former in 1 move.

So we have

Pn =
1

2n− 1
Pn−1 +

2n− 2

2n− 1

2

2n− 2
Pn−1

=
3

2n− 1
Pn−1,

=
3n−12nn!

(2n)!
,

and plugging in 6 yields
9

385
.

Q ♢ Take a random permutation of [13]. Given the longest increasing subsequence has length 10, find the probability
the K♢ is the last card.
Solution. After much work, I searched OEIS to see if my pattern (number of permutations of [n] with longest
increasing subsequence of length n− 3) was recognized, which is basically giving up. It was recognized, but not with
any closed form – there is no closed form. Further investigation shows that only asymptotics are available.

Searching OEIS yields
https://oeis.org/A245666 https://oeis.org/A245665
which together yield

153341

275705

I do not plan on doing bashy counting on this problem. I may look at asymptotics, but the problem definitely
should have been phrased that way to begin.
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K ♢
Solution.

A ♡ A tiny airplane has gotten stuck inside an inflatable ball and is flying around randomly. When you stop and
look, what is the probability the ball is closer to the center of the ball than to the outside?
Solution. We seek the ratio between the volume of the half-unit ball and the volume of the unit ball. Note that the
volume is proportional to r3, and we simply get

1
2

3

1
=

1

8

2 ♡ Two planes are travelling at 60mph and 180mph respectively. They both stop independently after 0-60 seconds
(uniformly at random.) What is the probability that the planes travel less than a mile total in sum?
Solution. This is the same as adding one Unif(0,1) and a Unif(0,3) and asking the likelihood the sum is less than
1. The area of the triangle bounded by y=0, x=0, and y+x=1 is 1

2 and the total area of the space of possibilities is

3, for a likelihood of
1
2

3 =
1

6
.

3 ♡ Form a triangle with 2 points on a circle and its center. What’s the probability this triangle is acute? What
about a sphere?
Solution. For a circle, the second cyclist has to be within the π

2 radians to the left or right of the first, for a
probability of

1

2
.

For a sphere, WLOG let the first point be the point with minimal x− coordinate. If we require that the second
point is on the z = 0 circle, the probability is again clearly half. but then for any point P on the z=0 circle, note
that the circle going through P and with normal vector parallel to i consists of points making the same angle with
the center and (-1,0,0) as P. The answer is now clearly

1

2

4 ♡ A round helicoptor of diameter 3 is trying to land. Its landing zone is covered in painted lines which form a
grid of 4x4 squares. The helicoptor is supposed to land fully within a square, but the pilot landed randomly. What
is the chance the helicoptor falls within a square regardless?
Solution. WLOG let the helicoptor’s center be in square S. The distribution of its center given that it lands in
square S is still uniform. Then, the helicoptor’s center must be 3

2 from each of the edges of the 4x4 square that is S.
This allows it a 1x1 square in which it can safely land, for a probability of

1

16

5 ♡ A unit circle’s center is randomly chosen within the interior of a rectangle of dimensions l, w. What is the
probability it intersects one of the diagonals?
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Solution. The actual problem includes a physical interpretation which is too complicated to work out, so I simplify
the problem to allow the circle to have parts outside the rectangle.

I am no technological geometer, and I humbly offer my scratch work. My solution ends up being

4

WL
(
√

W 2 + L2 − W

L
− L

W
)

6 ♡ Every morning, two friends independently bike to a cafe, arriving uniformly between 7,8am. The first to arrive
waits for t minutes, hoping their friend joins in time. If not, the pair leaves coffeeless. If they are 36% likely to get
their morning coffee, what is t?
Solution. Let x, y be the arrival times of the friends. The region of meeting is bounded by y = x+ t and y = x− t.
In any case, the region of not-meeting (can be represented) is two triangles of side length (1-R) where R is in hours.
So the total region of not meeting has area (1− T )2. This region has area .64, so 1− T is .8 and p is .2, or

12

minutes.

7 ♡ N cyclists are biking around a circular track at a rate of 1 rpm. They start in uniformly random locations and
random orientations. Just before a pair would collide, they instantly reverse direction. What is the expected number
of times all the cyclists reverse direction each minute?
Solution. Cyclists reverse direction on a collision, so we seek the expected number of collisions. The primary
observation is to note that each cyclist can be viewed as simply passing through opposing cyclists – when a cyclist
A and their bumper B reverse directions, if we label A ’B’ and B ’A’ then the situation looks like the cyclists passed
through each other. Then it is clear that in this pass through version, each cyclist passes through N−1

2 of the other
cyclists in expectation (the ones facing the opposite direction.) They do this twice per revolution, so each cyclist
does their little phasing trick N − 1 times per revolution in expectation. Finally, note the question asks ”number

of times cyclists reverse direction each minute” so depending on interpretation we can answer N(N − 1) (every
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instance of a turn around, counting a phase through twice for the perspective of each cycler being called a ”time”)

or
(N)(N − 1)

2
if we take the meaning of time in the literal sense; as in periods of time of length 0, counting each

phase-through once.

8 ♡ N cyclists are biking around a circular track at a rate of 1 rpm. They start in uniformly random locations and
random orientations. Just before a pair would collide, they instantly reverse direction. What is the probability all
cyclists are where they started after a minute?
Solution. I quite liked this problem. Read the solution to 7♡ to understand a bit of machinery surrounding this
problem; namely, that if we seek to analyze properties of this system that don’t depend on us tracking the identities
of cyclists, we can just act as if the cyclists phase through each other. We call this the ”phasing lemma”.

However, the property we seek does depend on cyclists’ identities. We make some observations anyways using
the phasing lemma anyways.

Note that by phasing lemma, the ending configuration of cyclists ignoring their labels is equivalent to the initial
configuration.

Now, also note that any cyclist in the actual configuration (not the configuration equivalent-by-phasing-lemma to
our real configuration) can never cross through another cyclist. That is, if a cyclist starts between two others, they will
end between those two cyclists. Formally, suppose the cyclists are initially numbered C0, . . . , Cn−1 counterclockwise
and starting from the rightmost point on the circle – that is, by increasing theta if we imagine the cyclists initial
positions to be written in polar form. Then if cyclist C0 ends up where Ci started, then cyclist Cj must end up
where cyclist Cj+i mod N started.

If all cyclists are facing the same way, then it is trivial that they all end up at their starting position. Now,
suppose that all cyclists do not face the same way.

Then, let us call Dri the time the cyclist Ci spends moving clockwise and Dli the time the same cyclist spends
moving counterclockwise. We have that

Dri ≡ Dli mod 1, Dri +Dli = 1

(when our problem requirement holds, the cyclist ends where they starts and moves the entire minute) and Dri, Dli >
0 (every cyclist makes at least one collision, and there is no case where a cyclist experiences two collisions simulta-
neously. Every cyclist makes at least one collision as follows: find the cyclist C’ that supposedly does not make a
collision, note that another cyclist starts facing the opposite direction, and then by the phasing lemma some cyclist
will cross the real path of C’.) These together imply that

Dri = Dli∀i.

Now, this means that the average over all i of Dri − Dli is 0. But now by phasing lemma, this average is also
R − L, where L is the number of cyclists initially facing counterclockwise and R is the number of cyclists initially
facing clockwise. So we have that L = R is a necessary condition for our result to hold when all cyclists are not
initially monodirectional.

But now finally, we show this condition is also sufficient.
AFSOC that L = R but not all of the Dri −Dli are 0.
Thm: Of the Dri −Dli terms, they all have the same sign.
Recall from earlier that the cyclists’ ending positions are fixed by a single cyclist’s ending position. Then,

(suppose) C0 ended up where Ci was. Then Ck ends up where Ck+i mod n ended up ∀k. Let xk be the initial
position (theta divided by 2π) at which Ck is located. Then note that Ck ends at xk+i and starts at xk, and so we
either have that Dlk −Drk = xi − x0 or Drk −Dlk = x0 − xi + 1.

Now, for the proof. We proceed via contradiction (remember, this is nested within the outer contradiction that
not al the Dri −Dli terms are 0.) Suppose not. Then, note there exist Ca, Ca+1 mod n two consecutive cyclists for
which Dr(a+1) > Dl(a+1), Dra < Dla. That is, the first of the two went more counterclockwise to its destination and
the second went more clockwise. We are guaranteed to have two such consecutive cyclists ”pointing towards each
other on average” via an easy contradiction argument (Hint – you are also guaranteed to have two pointing away
from each other.) Ca+1 must pass or at least arrive at C ′

as starting position, and the same holds in reverse. It is
now very evident (imagine the circle as now a line; neither of these points is permitted to get to their destination by
moving in the other direction by construction) that both cyclists cannot arrive at the other’s starting point (which
is necessarily on the way to their destination by phasing lemma) while maintaining that the first is to the clockwise
direction of the second. This is a contradiction, which shows that all the Dri −Dli terms have the same sign.
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But now this is a contradiction as if all these terms have the same sign, their average cannot be 0. So finally,
all the Dri −Dli terms are 0, and the initial configuration having an equal number of counterclockwise-facing and
clockwise-facing cyclists to start is a sufficient condition to ensure all cyclists end up where they started.

Finally, this evaluates out to

1

2n−1
if n odd and

1 +
(
n−1

n
2

)
2n−1

if n even.

9 ♡ Cars of length 2 are parking on a street of length 100, with parking meters evenly spaced every length 1. Each
minute, a car arrives and parks at a uniformly randomly open spot, aligning its front bumper with a parking meter.
When no more cars can possibly fit, roughly what fraction of parking meters are unoccupied by a car?
Solution. Let Fn be the answer to the above question, with ”100” replaced with n and ”fraction” replaced with
”number”. So the answer is F100

100 . Let’s case on the position on the first car that parks, just looking to find Fn. If
it parks at the very left (with probability 1

n−1 , we are left with an expected Fn−2 spaces unoccupied. If it parks
one space over, we are left with 1+Fn−3. In particular, if the first car’s left endpoint is placed i spaces in (with i in
[0, n− 2]), then we are left with Fi + Fn−2−i. This occurs for each i with probability 1

n−1 , so

Fn =
1

n− 1

n−2∑
i=0

Fi + Fn−2−i

=
2

n− 1

n−2∑
i=0

Fi.

Now, note

Fn−1 =
2

n− 2

n−3∑
i=0

Fi,

so

Fn =

2
n−3∑
i=0

Fi

n− 1
+

2Fn−2

n− 1
=

(n− 2)Fn−1 + 2Fn−2

n− 1
.

At this point we may note that if we were more clever it may have been possible to derive this recurrence directly,
but alas I could not.

Now, we look at the generating function for this recurrence, denoted F (x). Here, we assume familiarity with
generating fucntions and differentiating them in the interest of space.

F (x) = F0x
0 + F1x

1 +

∞∑
i=2

Fix
i

= x+

∞∑
i=2

i− 2

i− 1
Fi−1x

i + 2

∞∑
i=2

Fi−2

i− 1
xi

= x+

∞∑
i=2

Fi−1x
i −

∞∑
i=2

1

i− 1
Fi−1x

i + 2

∞∑
i=2

Fi−2

i− 1
xi

= x+ xF (x)−
∞∑
i=2

1

i− 1
Fi−1x

i + 2

∞∑
i=2

Fi−2

i− 1
xi

We can look at the third term as follows: let (we henceforth denote functions just by the letter, with F denoting
F (x) and similar)

G =

∞∑
i=2

1

i− 1
Fi−1x

i

= x(
G

x
)′,
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G = x

∫
F

x
dx.

Similarly, let

H =

∞∑
i=2

Fi−2

i− 1
xi,

(
H

x
)′ =

∞∑
i=2

Fi−2x
i−2 = F,

so

H = x

∫
Fdx.

Then, going back to our initial expression,

F = x+ xF − x

∫
F

x
dx+ 2x

∫
Fdx,

F

x
= 1 + F −

∫
F

x
dx+ 2

∫
Fdx,

and differentiating yields
xF ′ − F

x2
= F ′ − F

x
+ 2F,

xF ′ − F = x2F ′ − xF + 2x2F,

=⇒ F ′

F
=

2x2 − x+ 1

x− x2
,

=⇒ −dF

F
=

2x2 − x+ 1

x2 − x
dx.

Integrating and long dividing yields

− logF + C =

∫
(2 +

x+ 1

x2 − x
)dx,

and partial fractions yields

− logF + C =

∫
(2 +

2

x− 1
− 1

x
)dx.

=⇒ logF + C = log x− 2 log(x− 1)− 2x,

=⇒ CF =
e−2xx

(x− 1)2
,

or (multiplying together the Taylor series of the components and convolving,)

F = C

∞∑
i=0

xi
i−1∑
j=0

(−2)j

j!
(i− j).

Then Fi = C
i−1∑
j=0

(−2)j

j! (i− j), and we can quickly see that plugging in i = 1 that C = 1. So

Fi =

i−1∑
j=0

(−2)j

j!
(i− j).

In particular, our solution is F100/100 =

1

100

99∑
j=0

(−2)j

j!
(100− j).
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Let’s instead consider the solution for the proportion Pi = Fi/i:

Pi =
1

i

i−1∑
j=0

(−2)j

j!
(i− j),

=

i−1∑
j=0

(−2)j

j!
− 1

i

i−1∑
j=0

(−2)j

(j − 1)!
,

and we may note that the terms of both summations start getting quite small in magnitude quickly. So we can
extend the summations to infinity without adding too much,

≈
∞∑
j=0

(−2)j

j!
− 1

i

∞∑
j=0

(−2)j

(j − 1)!
,

≈ e−2 − 1

i
(1 +−2e−2)

≈ e−2 − 1

100
(1− 2e−2) .

10 ♡ Cars of length 2 are parking on a street of length 100. Each minute, a car arrives and parks at a uniformly
random spot on the road without crashing into another car or running off the road. When no more cars can possible
fit, roughly how many cars have parked?
Solution. Let’s make a few preliminary observations. First, letting E(x) be the expected number of cars on a road
of length x, we have

E(x) = 0 : x < 2, E(x) = 1 : 2 ≤ x ≤ 4,

and for everything else, we can case on the placement of the first car. Specifically, the first cars center is U(1, x−1
(given that x ≥ 2 and the car can fit,) and so the expectation for x ≥ 2 is, with the first car arriving with center at
position i,

E(x) = 1 +

∫ x−1

1

p(X = i)E(i− 1) + E(x− i− 1)di,

with the ”1+” denoting that the first car has indeed arrived.

= 1 +

∫ x−2

0

1

x− 2
(E(i) + E(x− 2− i))di

and since the second term in the integral just ”iterates” over the same function values as the first one in reverse
order (one can u-sub to be precise) we get

E(x) = 1 +

∫ x−2

0
2E(i)di

x− 2

Now we can manipulate by multiplying both sides by x− 2 and differentiating both sides using FTC to get

E′(x)(x− 2) + E(x) = 2E(x− 2) + 1

Now, let’s remark that E is not continuously differentiable; it’s clearly not differentiable at 2 (not continuous –
E jumps from 0 to 1) or 4 (the derivative jumps from 0 to some positive number.) I suspect that at integer 2k the
k − 1th derivative is discontinuous. However, it is somewhat intuitive that as x grows large, the function should
become roughly linear. A vague and entirely unconvincing argument goes like this: one might imagine that for every
2 units we add, an additional car CAN fit in, so the maximum number of fittable-cars is linear. Also, the minimum
is linear and is roughly x

4 - to see this, just greedily place cars so as to minimize the number of cars placed. So this
expectation satisfies

x

2
≥ E(x) ≥ x

4

and this is certainly enough evidence that we are to search for a linear function.
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Plugging in E(x) = Ax+B into our differential equation yields

Ax− 2A+Ax+B = 2Ax− 4A+ 2B + 1 =⇒ B = 2A− 1,

and our equation is of the form
E(x) ≈ Ax+ (2A− 1)

for some A. Note that if we try to pick x < 4 to interpolate this, we will horribly fail as the function is jumpy
until at least x = 4. Instead, we compute E(5) = 5

3 , E(6) = 2 (by brute force; in particular, note for 6 that you are
guaranteed to have 2 cars except for the case in which you have 3 with probability 0; if the first cars center WLOG
is to the left of or on 3, a car can always be placed at 5 and a third car can be placed with probability 0) and as our
current ”slope” (1-finite-difference is 1

3 almost right in between 1
2 ,

1
4 we don’t need to go further. We interpolate on

E(6) = 2 and get

A(6) + 2A− 1 = 2 =⇒ A =
3

8

, which then gives us a line

y =
3

8
x− 1

4
.

Plugging in 100 gives us that

E(100) ≈ 37.25 ,

with the true value being slightly less as the second derivative should steadily decrease from a small positive number
at 4 to roughly 0 at 100.

Indeed, computationally solving the given differential equation with python under the given initial conditions
yields that E(100) ≈ 37.07615 which is quite close to our naive estimate.

J ♡
Solution.

Q ♡
Solution.

K ♡
Solution.

A ♠ Two crabs are facing each other on the beach. Each second they randomly walk one step to the right or one
step to the left. After 6 seconds, what is the probability they are still across from each other?
Solution. This is

6∑
i=0

(
6
i

)2
212

,

and here we will include a non-combinatorial way to derive

n∑
i=0

(
n

i

)2

for the reader.

Note that this is the coefficient of xn in (x+ 1)2n =
n∑

i=0

(
n
i

)
xi

n∑
i=0

(
n
i

)
xn−i. But

(x+ 1)2n =

2n∑
i=0

(
2n

i

)
xi,

15



and the coefficient of xn is
(
2n
n

)
.

With that aside out of the way, we end up with

=

(
12

6

)
/212 =

231

1028

2 ♠ In a random binary sequence, which is more likely to come first? 00 or 01? What is the expected time to see
00? 01? What about 001?
Solution. Unless we instantly roll BB, we are guaranteed to roll RB first. So BB comes first 1/4 of the time, and

RB is most likely to arrive first.
To see BB we have a simple states problem. We solve:

E =
1

4
(2) +

1

2
(E + 1) +

1

4
(E + 2).

(These are the cases: BB, (R), BR.) This yields E(tBB) = 6 as the average time to see BB.

To see RB we have

E =
1

2
(E + 1) +

1

2
(3),

which yields E(tRB = 4 as the average time to see BB. (We can also see this as the average time to see a red, which

is 2, summed with the average time to see a blue after, which is also 2, by LOE.)
For BBR, we have

E =
1

2
(E + 1) +

1

4
(E + 2) +

1

4
(4),

and so

E(tBBR) = 8

Putting this here: https://martingalemeasure.wordpress.com/2014/02/02/monkey-typing-abracadabra-14/
I read this 2 years ago, didn’t fully understand it, and have been looking for it ever since. Pretty important

moment for me.

3 ♠ A turtle is staring out at the horizon, one step away from the ocean. The turtle takes random steps, with
probability 2/3 back towards the top of the beach and 1/3 towards the ocean. Whats the chance the turtle ever
makes it to the ocean?
Solution. 1

2

x
is a martingale for the 2-thirds 1-third random walk. Then,

1

2
= P (1) + (1− P )(0),

with the probability of making it into the ever-so-close ocean being

1

2

4 ♠ A bunny cannot decide where to take a nap. There is a rose bush 4 steps to the left and sunflowers 8 steps to
the right. The bunny is 25% to step left and 75% to step right. How many steps will it take in expectation until the
bunny can get some rest?
Solution. Approaching this problem with states sounds annoying. Instead, we solve the more general problem via
function equation / martingale techniques. First, we phrase the more general problem:

A random walk with probability p of moving right begins at point a on the number line,
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and terminates upon reaching 0 or L. Find the expected number of steps taken.

Our FE is
f(x) = 1 + pf(x+ 1) + (1− p)f(x− 1)

subject to f(0) = f(L) = 0.
I spent a good amount of time working on this FE, and a quick write-up cannot do it justice. (To be fair, time

spent on an FE is infinitely more enjoyable than time spent on a states problem.)
First, we note that this is almost the gamblers ruin FE, with martingale-solution

(
1− p

p
)x.

A quick look reveals that this is not a solution (duh). The boundary conditions, for one, are doomed. We need
to subtract 1, and a natural way of doing this is to add ax such that pa(x + 1) + (1 − p)a(x − 1) = −1 + ax (we
isolate the ’1’ in our FE and try to add a linear term to get rid of it) or

(2p− 1)(a) = −1 =⇒ a =
−1

2p− 1
.

Now, we have a better attempt at a solution:

(
1− p

p
)x − 1

2p− 1
x.

Importantly, it is not clear how to use the boundary conditions. Our ”solution” doesn’t even reference L! I
was stumped for a while until my friend mentioned another functional equation – the same FE, but with only the
boundary condition at x=0 – and that it was ”underconstrained”. This led to me realize that subtracting 1 from
our existing solution was a ”valid solution” for some L – that is,

(
1− p

p
)x − 1

2p− 1
x− 1

is a martingale and satisfies f(0) = 0, and probably satisfies f(x) = 0 for some x ̸= 0. Now, this x may not be an
integer, so in the strictest sense this might be a solution with no physical interpretation for an invalid L. But this
naturally leads to the question of how to incorporate our ”free variable”. A bit of thinking yields

f(x) = c(L)((
1− p

p
)x − 1)− 1

2p− 1
x.

This is basically unfindable without first underconstraining the problem, as c(L) is a complicated function in L.
Indeed, we have that

c(L) =
1 + L

2p−1

( 1−p
p )L − 1

,

and our final solution is

f(x) =
1 + L

2p−1

( 1−p
p )L − 1

((
1− p

p
)x − 1)− 1

2p− 1
x.

Finally, lets look at our particular case. We have L = 12 and p = 3
4 for a solution of

16
4593

6643

5 ♠ A beaver is looking for materials for her dam. There are a wide mountain and a wide river 20 steps apart and
parallel. The beaver randomly steps in 1 of the 4 cardinal direction on her search. If a step would have taken her
up the mountain, she instead goes towards the river. If she is at the mountain, how many steps can she expect it to
take to return to the river?
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Solution. Let the river be to the north at y = 20 and let us start at y = 0. Let us do away with the mountain and
instead just have two rivers 40 steps apart at y = 20, y = −20. (That is, this new problem is exactly the same as the
problem with a mountain and a river, and the implicit bijection is hopefully evident; every step starting or ending
below y=0 in our new problem is mirrored in the initial problem.) This is to do away with boundary conditions at
y = 0.

Clearly, the expected time to one of the rivers is only dependent on our current y value. We have a system of
states equations for states E(y) for all y in [−19, 19] :

E(y) = 1 +
1

2
E(y) +

1

4
E(y + 1) +

1

4
E(y − 1),

and now we apply the classical technique in such situations where when we have large symmetric states equations:
we treat it as a functional equation in y instead and searching for E(y). (If we find a function satisfying the
functional equation and that E(−20) = E(20) = 0, then by definition the function will simultaneously satisfy all
states equations.)

Now,

1

2
E(y) = 1 +

1

4
E(y + 1) +

1

4
E(y − 1),

=⇒ E(y) = 2 +
1

2
E(y + 1) +

1

2
E(y − 1).

One may recall that the simple random walk has martingale Y 2 − t, and corresponding solution to functional
equation −y2. In fact, −2y2 is a satisfactory solution to this new functional equation. We can add any constant and
keep our solution a solution, so we add 800 so the function is 0 at 20,−20 to yield

E(y) = 800− 2y2 =⇒ E(0) = 800 .

6 ♠ A chipmunk is stuffing its mouth with acorns. It starts with 6 and every second, it adds a nut with probability
2
3 and drops one with probability 1

3 . What is the probability it stuffs its mouth with 36 acorns before it drops all of
its acorns?
Solution.

(
1

2
)x = (

1− p

p
)x

is our martingale. Then, letting P be the probability of holding 36 acorns,

1

2

6

= P
1

2

36

+ (1− P )
1

2

0

=⇒ 1

26
= P

1

236
+ 1− P,

and

P =
1− 1

26

1− 1
236

=
236 − 230

236 − 1
.

7 ♠ A crow and a raven are each picking up coins off the street at the same pace. They are clever and keep track of
the number of heads they picked up. They each pick up N coins total. What is the chance they never collected the
same number of heads after starting?
Solution.

Let the crow and raven pick up coins in order, so the Crow’s first coin precedes the Raven’s first coin precedes
the Crow’s second coin . . . . There are 2N coins picked up in this way.

The key observation is that we can view the sequence of 2N coins picked up as a random up-right walk of length
2N, where we move up if either the current coin is heads and being picked up by raven or tails and being picked up
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by crow, and move right if the current coin is tails and picked by raven or heads and picked by crow. Note that this
new random walk meets y = x precisely when the number of heads by both birds is equal.

Now, we simply seek the likelihood that a random walk of this sort doesn’t meet y = x. Such a walk must end
at (2N − A,A) for A ∈ [0, 2N ]. We compute the probability that we have such a walk for A ∈ [0, N − 1] and then
multiply by 2. (Note paths ending at [N,N] can’t fulfill the criteria.)

First, we count the number of paths beginning with a right move that end at (2N −A,A).
For some A, the number of paths of this form is (

2N − 1

A

)
.

Now, we make the following observation: for all A in our desired range, there exists a bijection between paths to
(2N −A,A) passing through y = x and paths to (2N −A+1, A− 1) (the term ”paths” here refers to paths starting
with a right move.) Just flip every step made in a path of the former variety before and including the first step onto
y = x and we end up with a path to (2N −A+ 1, A− 1) (up/right gets swapped.)

Then, we can view the number of paths to (2N −A,A) for A in the desired range as

N−1∑
A=0

AA −BA,

where AA denotes the number of right-beginning paths to (2N − A,A) and BA denotes the number of paths of the
above variety passing through y = x. But our bijection above says

BA = AA−1,

and so the sum simply evaluates to

AN−1 −A−1 =

(
2N − 1

N

)
− 0.

Doubling this yields

2

(
2N − 1

N

)
=

(2N − 1)!(2N)

(N !)(N − 1)!(N)
=

(
2N

N

)
,

and so the probability of such a path being valid is the number of such valid paths over the total number of
possible paths,

=

(
2n
n

)
4n

8 ♠ B blue jays and C cardinals are sitting together in a tree. The birds take turns flying away. What is the
likelihood that there is a time when the same number of blue jays and cardinals have flown away?
Solution. t = 0 doesn’t count.

We look for the probability that there is no such time. We call the event that there is no such time ’N ’ (for NOT
happened.). WLOG B > C. Note if a C goes first then there is no chance of N occurring. So it suffices to find the
number of paths from 0, 0 to (B,C) that stay strictly underneath the B = C diagonal except for the beginning and
then divide by

(
B+C
B

)
, and then finally take the complement.

If you look at the Wikipedia page for catalan numbers, you will see the now-standard argument to be used in
these situations (search for ’bad paths’.) The idea is that the first step must be in the positive B direction. Then,
we must stay below or on the C = B − 1 diagonal. There is a bijection between paths (starting at (1,0) that cross
the C = B − 1 diagonal and touch the C = B diagonal before arriving at (B,C) (therefore not being part of our
event N) and paths from (1, 0) to (C-1,B+1), by taking all up moves and right moves after the first incidence with
the line B = C and swapping them. So there are (

B + C − 1

C − 2

)
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bad paths that cross the diagonal, (
B + C − 1

B − 1

)
paths in total that start at (1,0) and end at (B,C), and so there are(

B + C − 1

B − 1

)
−
(
B + C − 1

C − 2

)
good paths. Finally, there are (

B + C

C

)
− (

(
B + C − 1

B − 1

)
−
(
B + C − 1

C − 2

)
)

paths that cross the B=C diagonal at some point, and the desired probability is

1−
(
B+C−1
B−1

)
−

(
B+C−1
C−2

)(
B+C
C

)

9 ♠ Two monkeys are playing a game of war with a deck of 2N cards numbered 1 through 2N. Each monkey
randomly starts with N of the cards. On each tern, both monkeys pick a random card from the cards currently in
their hand. The monkey that picks the larger card keeps both cards. On average, how many turns will it take for
one monkey to have all the cards?
Solution. This was a really cool problem. The basic idea is that if at any moment we just store the number of
cards in the first monkeys hand as a current - position in a random walk, then the random walk is equally likely to
go right as it is to go left.

The idea is that if this assertion is true, then an observer viewing the game that can’t see the values on the cards
being exchanged and can only view how the number of cards each monkey holds cannot distinguish the process from
a 50-50 random walk. Since they observe the same expected time to completion as an omniscient viewer, we could
then just compute the expectation from this observer’s POV and get n2.

Now, to prove this: we make the following assertion:

Lemma 1 The distribution of the process (that is, the distribution of the set of cards in the left monkey’s hand) at
some arbitrary time t given that the left monkey has k cards at this time is the uniform distribution on the

(
2n
k+1

)
sets

of hands the monkey can have.

Proof: we proceed by induction. At t = 0, the claim is true for k = n by the problem statement. Now, suppose
the claim is true for t = t0 (that is, for all 1 ≤ k ≤ 2n− 1. – we don’t assume that the number of cards the monkey
has is uniform; just that given a particular number k of cards, the monkey’s particular set of k cards are uniformly
random.) We show it is true for t = t0 + 1 for all 1 ≤ k ≤ 2n− 1.

First, consider an arbitrary value of k.
Now, consider the case where at t = t0 the left monkey has k − 1 cards. Finally, consider a particular subset of

cards S : |S| = k that the monkey ends up with at time t = t0+1. By induction hypothesis, the monkey’s distribution
of hands at time t0 is the uniform distribution on subsets of size k − 1. Then the probability the monkey ends with
S at time t0 + 1 can be computed directly as follows: let a0, . . . , ak be the cards the left monkey has at time t0 + 1,
with ai < aj when i < j. Then the cases are as follows: Either a1 got transferred, or a2 got transferred, etc.

The probability ai gets transferred over to create the new state is the probability that S \ ai is the state at t0,
that ai is picked from the right monkey’s pile, and that a larger card is picked from the left monkey’s pile. This is
(by IH, problem statement, and definition of indices,)

1(
2n
k−1

) 1

2n− k + 1

i

k − 1
,

and summing over all i yields

=
(2n− k + 1)!(k − 1)!

(2n)!

1

2n− k + 1

1

k − 1

(k − 1)(k)

2
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=
(2n− k)!(k)!

2 ∗ (2n)!
=

1

2
(
2n
k

)
Recall that this is the probability that S is the state at time t0 + 1 given that there were k − 1 cards in the left
monkey’s hand at time t0. These probabilities over all S : |S| = k sum to half; if we further condition that the
state-transition is k − 1 → k, then note that we divide by the probability that the state-transition is right-to-left,
which is 1

2 as the subset in the left monkey’s hand at time t0 is uniformly random by IH, and so the conditioned
probability is

1(
2n
k

) ,
and since S was arbitrary each choice of S occurs with equal probability and so this is the uniform distribution.

Now, if at time t0 there were k + 1 cards in the left monkey’s pile, then there were 2n− k − 1 cards in the right
monkey’s pile at time t0 and 2n − k cards at time t1, and so applying the same analysis to the right monkey (who
by IH would have a uniform distribution on S : |S| = 2n− k − 1 at time t0) yields the same result for a k + 1 → k
transition. Since the outcomes in both cases are a uniform distribution, then at time t0+1 given that the left monkey
has k cards its equally likely to have any particular k− subset of [2n] regardless of whether it had k − 1 or k + 1
cards at the preceding timestep.

end lemma
So at any time, given that the left monkey has k cards, this set of cards is equally likely to be any k− subset.

Then, it is clear that the left monkey is equally likely to lose a card as they are to gain a card given they currently
have k cards. (A quick sketch of such a proof is below, but this should be intuitive.) Then, since k was arbitrary,
the left monkey is equally likely to lose a card as they are to gain a card at any time or time from the perspective
of the outside observer, and so the expected time for one monkey to have all the cards is the same as the expected
time for an n− n random walk to terminate, which is equal to

n2 .

(A quick bijection can be seen by, for instance, noting that in any case where the ath smallest card and the
bth smallest card are picked from the left, right monkeys respectively and for any particular choice of cards the left
monkey holds S′ : a ∈ S′, b ̸∈ S′, there is a case where we have S′ : b ∈ S′, a ̸∈ S′ where we just replace a with b that
occurs with equal probability and where a,b are again picked but this time the card moves to the right.)

10 ♠
Solution.

What is the probability a 2d random walk returns to the origin?
Solution. First, we find the expected number of returns to the origin.

Let Rn denote the event that the walk returns to the origin after 2n steps (possibly not for the first time.) Also,
note that the walk can only return to the origin after an even number of steps.

Then of these 2n steps, we need ’a’ lefts-and-rights and ’b’ ups-and-downs such that a + b = n. In other words,
we have the number of walks of length 2n that return to the origin after 2n steps is∑

a+b=n

(
2n

a, a, b, b

)
,

where we use a multinomial coefficient to make clear that we pick a lefts, a rights, b ups, and b downs in our path.

=
∑

a+b=n

(2n)!

a!a!b!b!
.

=
∑

a+b=n

(
2n

n

)
n!2

a!a!b!b!
,

motivated by the fact that this substitution matches each a!b! term in the denominator with an n! term in the
numerator,

=

(
2n

n

) ∑
a+b=n

(
n

a, b

)2

,
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and now the multinomial coefficient is a little silly.

=

(
2n

n

) n∑
i=0

(
n

i

)2

=

(
2n

n

)2

,

and the probability of return is

=

(
2n
n

)2
42n

.

The expected number of returns is just (by LoE) the sum from n=1 to infinity of this term, which is

∞∑
n=1

(
2n
n

)2
42n

Stirling’s approximation yields √
2πn(

n

e
)n ≤ n! ≤

√
2πn(

n

e
)ne

1
12n ,

so
∞∑

n=1

((2n!)/(n!)2)2

42n
≥

∞∑
n=1

(
√
2π(2n)( 2ne )2n/(

√
2πn(ne )

ne
1

12n )2)2

42n

=

∞∑
n=1

4πn24n(ne )
4n

4π2n2(ne )
4ne

1
3n 42n

=

n∑
i=1

1

πne
1
3n

≥
n∑

i=1

1

πne
1
3

,

which diverges, so the expected number of returns is infinite.
Then, let the probability of return be p. Then the expected number of returns E is

E = p(1 + E)

(with probability p, you return and then get E more returns in expectation. If you don’t return, you get no returns,)
or

p =
E

1 + E
,E =

p

1− p
.

It’s clear now that p = 1 . The argument is direct when E is noninfinite; in any case, we can see that p ∈ [0, 1],

and p ∈ [0, 1) results in a contradiction, justifying our intuition for the division by 0 or limit shenanigans a little
more rigorously.

J ♠
Solution.

Q ♠
Solution.

K ♠
Solution.
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